If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-14h+36=0
a = 1; b = -14; c = +36;
Δ = b2-4ac
Δ = -142-4·1·36
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{13}}{2*1}=\frac{14-2\sqrt{13}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{13}}{2*1}=\frac{14+2\sqrt{13}}{2} $
| .18x=20+.14x | | 3z+9=24 | | 12^2+16^2=c | | .18x=20+14x | | 5/4x-2=6 | | (90-19y)=(50-17) | | 54-4u=2u | | 3s+6=9 | | -9(u+3)=27 | | 44-(3c+4)=4(c-6)+6 | | 45+v=10v | | v-2/5=2/3 | | 15-25x(5-x)=275 | | 90=4+2x | | 0=d^2-14d+24 | | 5x+9+4+6x=0 | | (5x-17)=(3x+3) | | 6=(3x)^(1/2)/(x-11)^(1/2) | | -y+11=2(y-8) | | 90x-2=90 | | 25w^2+60w+32=0 | | 76=30-12x | | 26=2-3x | | (3y)+(129)=180 | | 21=5+4t | | -4(y+9)=-24 | | 3(m+5)=5 | | x+2x/x=4 | | 6=((3x)/(x-11))^(1/2) | | 60-5x=100-10x | | 3x+88x+5=90 | | 6=(9x)^.5 |